
INC ITHACB A NY AO SNEU ET YSAL. OCT 07 C R CNTES17
MCLN ITM6214C-0Y1 SNN62T L C 6 ACTRS-

WCASIFLRSSIF/6 1G2/3 NL

~Krim.;-

11160 1111 2-0

111IL2 11111.

Hill ! o

IIII '- ' 10

1V8

1111 = II II I1 -

.4.

%

0
If,

-.. . %,-- . .-,.. ,,,-..- .- -.. ... -. -. ...- .,.. • .. ',,../ . .' . • .. .,. . • -.. ,.. ,.. -. -.. ,,.,,'.j ,,. ",..-, ,,. . . . ' .% . . % '.' . ,' ,,, ,,%" ,,,.,,.,"%" - .,,

4-. ' . ' ," . " . " ,r . - . r - - . " . . . "•" ' ' " ' ,',.
,

' , ' . . , . ,% ,'% % % , ", % " ,'

FILE COPY ;

RADC-TR-87-179 C

FMOs Reseiar Ptt
Ocber 1U

00

0

NEBULA SUPPORT SOFTFWARE I

Odyssey Research Associates DETC
FEB 0 5 1988 U

Abrahm Shenker, Loned Silver and George Gesslein SEO8D

,.5

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

8 2 02 0 0

%%
• gSW

K~v , . _, 4*',3e ;Ct .' '_ 'v 2" g' Z - . ', "¢" ., . - . ,.* ., .. •*.. .- . •... • ,. .. , W-. V . , . , , .. ./.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-179 has been reviewed and is approved for publication.

APPROVED: 4.

FREDERICK A. NORMAND
Project Engineer

APPROVED: 1

CHARLES E. ANDERSON, Lt Col, USAF
Acting Director of Command & Control

FOR THE COMMANDER: 2 .A ,.a. _[

RICHARD W. POULIOT
Directorate of Plans & Programs

I-

N.=

b;.

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list. V

Do not return copies of this report unless contractual obligations or notice
on a specific document requires that it be returned.

C'

N'

N'

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a, SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
NI/A Approved for public release; distribution

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE unlimited.

N/A _____________________

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-87-1 79

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Odysey Rsearh Asociaes, (if applicable)

Od-ssev Research Associates, Rome Air Development Center (CO'C)
Inc.

6c. ADDRESS (City. State. and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

1283 Trumansburg Road Griffiss AFB NY 13441-5700

Ithaca NY 14850-1313

Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER , Si

ORGANIZATION (If applicable) Si

Rome Air Development Center COTC F30602-84-C-0182 %

8c. ADDRESS (Cit/. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO NO IACCESSION NO

63728F 2529 03 13

11 TITLE (Include Security Classification) "

NEBULA SUPPORT SOFTWARE CO

12 PERSONAL AUTHOR(S)

Abraham Shenker (Incermetrics), Leonard Silver, George Gesslein (ORA) ,13a. TYPE OF REPORT 13lb TIME COVERED 14 DATE OF REPORT (Year, Month, Day) I15 PAGE COUNT l

Final FROM Sep 84 TO Jun 87 October 1987 24

16 SUPPLEMENTARY NOTATION

N/A -I .

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and dentify by block number)

FiELD GROUP SUB-GROUP Nebula Port Unix Kernel

12 05 Instruction Set Architecture

Retarget C-Compiler
I ABSTRACT (Continue on reverse if necessary and identify by block number)

his is the final report for the Nebula Support Software contracts RADC contract

F30602-84-C-0182. "'it provides a Unix-based capability on the VAX-1I/780 which supported

the development of software targeted for execution on the Nebula computer operating under
the control of a native-Unix system. This effort consisted of two tasks - the first was
the retarget of the System V c-compiler and c-library to the Nebula Instruction Set

Architecture (ISA), and the second was the port of the System V kernel to the Nebula

Brassboard System developed by CDC. The code generated by the retargeted c-compiler

will be run on the Nebula simulator and on the RADC Brassboard implementation of the

Nebula ISA.

20 OiSTRIBUTIONi AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION . ,

UNCLASSIFIED/IJNLIMITEOC3 SAME AS RPT C3 OrIC USERS UNCLASSIFIED

22a 'JAME OF RESPONSiBLE N0vIDlOIIAL 22b TELEPHONE (Include Area Code) 22c OFFICE YMBOL

Frederick A. Normand (315) 330-2925 RADC (COTC)

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF 'HIS ' A(,E
UNCLASSIFIED

% 7 7

<I *

,.',''. ",'.''_" .'._', " ",._" ' " ."-P " '.*", ' "V" .p-, • ,p e . e ," . ',e - ." ." r .e ,- r .- . . .-.. , ' --3%" :I
' "

- " " .-"

I.|

M(A~rW1VJi'11Y-- 1. --"I ICI.'

'0

1. Introduction

1.1 Identification

This report is the Final Report for the Nebula Support
Software contract, RADC contract No. F30602-84-C-0182. It
presents the results of the effort. The tasks and technical
requirements for the Nebula Support Software effort are fully
discussed in the Nebula Support Software Statement of Work
(Revised January 11, 1984, PR No. B-4-3133).

1.2 Project Overview

The objective of the Nebula Support Software effort is to
provide a Unix-based capability on the VAX-11/780 which supports
the development of software targeted for execution on the Nebula

computer operating under control of a native Unix system. This
effort has been divided into two tasks:

1. Retarget the System V C compiler and C library for the

Nebula ISA

2. Port the System V Kernel to the Nebula Brassboard System

The code generated by the retargeted C compiler will be run ,-
on the Nebula simulator and on the RADC Brassboard implementation
of the Nebula Instruction Set Architecture.

2. Project Results

The retarqet of the System V C compiler has been success-
fully completed. The C compiler is hosted on VAX/EUNICE, and

generates assembly language compatible with Nebula assembler.
The assembly language generated by the c compiler has been suc-
cessfully assembled using the Nebula assembler, linked by the
Nebula linker and executed under control of the Nebula simulator.
Testing the compiler on the Brassboard implementation is complete.

C or

-2-

2.1 Byau at ion of Rg r

The approach taken was to retarget the VAX System V Release
2.0 C compiler. This compiler was selected because it is easily
retargeted and totally compatible with the System V Kernel and
utilities that will be rehosted. The selection of the System V
compiler constitutes an exception to the SOW~ -requi rement (SOWq
paragraph 4.1.1) , that the compiler be the same as the VMS/Unix
development environment. The System V C compiler and EUNICE C
compiler have both descended from the Johnson Portable C compiler
and the languages and semantics of the two compilers are highly
compatible.

The VAX System V C compiler is a version of the Johnson
Portable C Compiler. This compiler is entirely written in C and
designed to be easily retargeted. The compiler is organized
along the lines of machine dependent and machine independent
modules. Most of the instruction generation dependencies are
encapsulated into a set of code generation tables.

We found the modification of the Johnson Portable C Compiler
to be straight forward. There are aspects of the Nebula Archi-
tecture that are sufficiently different from most conventional
architectures that exposed some erroneous assumptions of the
machine independent portions of the compiler. A few of the
allegedly machine independent modules had to be modified slightly
for the Nebula retarget. A large portion of the effort was

* rewriting the code generation tables. This task was greatly sim-
plified by the similarity of the VAX and Nebula instruction sets
and argument addressing modes. The register allocator modifica-

* tions also comprised a major component of the retarget effort.
The register allocator was particularly machine dependent because
the VAX C compiler had implicit assumptions regarding the run-
time model and properties of general purpose registers.

4 The C library was extremely easy to retarget with the excep-
tion of the setjmp/longjmp library routines. These library rou-
tines had a strong dependence on the VAX run-time model and the
properties of the run-time stack. These routines had to be
redesigned and recoded from scratch. Most of the other C library

V routines only required recompilation.

The development environment selected to perform the retarget
was also a strong factor in the success of this part of the
effort. Sun workstations (Motorola 68000 based Unix 4.2bsd) pro-

* vided an ideal program development environment. The robust set
of debugging, configuration management and communication tools
available on the workstations greatly reduced the effort involved
in modifying, debugging and testing the retargeted compiler. The
compiler was entirely debugged using the workstation and then
rehosted to the VMS/EUNTCE environment for testing. The C corn-
piler generated code was tested by using the Nebula Assembler and
Nebula Simulator. The RADC supplied Nebula support tools

3

performed very well, and presented only few small obstacles to
overcome.

2.2 Eval1 u ation of_NgbujaSAJfo/___

The Nebula ISA instruction set provides a good support for
the C language. The rich set of operand addressing modes sup-
ports C data types nicely. The generalized operand size rules
greatly improves the code generated for expressions involving
different data representations. The register 1 stack provides
good support for local variables. In general, the code quality
(size and instruction count) for C expressions equaled or
exceeded that of the VAX targeted cowpiler.

The Nebula procedure model does not optimally suit the C
language function model. C function arguments must be passed by
value. Since the parameters must be copied, there is little
advantage to using the Nebula parameter passing mechanism.
Although the Nebula does not provide full hardware support for C
function linkage, the resulting call sequence is only slightly
more cumbersome than that on the VAX, and the implemented call
sequence is not expected to cause serious performance problems.

The following weaknesses of the ISA were found when design-
ing the run-time model for the C programming language:

1. Support for subroutine linkage (jsr and rsr) is very weak.
There is no efficient way to save the entire register set of
registers into memory or on the register 1 stack. This
severely limits the utility of subroutines as an alternative
procedure linkage model design.

2. The push unsigned instruction is conspicuously missing from
the ISA. %

3. An indirect register index operand addressing mode would be
very useful. The same effect can be generated using either
an intermediate register or a compound addressing mode. At'U
indirect register index addressing mode would be very useful
for languages like C that rely heavily upon pointers.

2 .3 QenchmarkingResuIts

The benchmark tests demonstrated that the retargeted compiler
produces code equal to the Vax C compiler.

Summary of Retarget Effort

"'l, VAX ,y,;tem V C con p Ier and C I ithrary have been succoss-
t Iv r,.t,,ir ptt.d to the r laotmli. The Nebul.- I,"A provide:; a vory

,1,)1 ';tI1J) r)T t for C ,'x r rPI; , rf r(I d a ta c (:cesS. The co do pi l i ty

-4-

produced by the Nebula C compiler is very close to the quality of

that produced by the VAX compiler.

2.5 Summary of Unix Port

The Unix system was ported to the Nebula Brassboard. All
non-I/O functions have been successfully tested. All I/O functions
were tested. Many of the tests failed due to hardware problems.
Nebula Unix successfully executes non-I/O dependent applications.

I.

Jk

S. S

'IA

S.t

.5

.5.

S :S

S wS

-5-

3. Unix Port Technical Approach

The following sections discuss the general technical
approach to be followed in performing each of the tasks outlined
above.

3.1 ix r ot

Porting the Unix Kernel to the Nebula will involve rewriting
the machine dependent parts of the VAX Unix Kernel. Some of the
machine dependent code is VAX assembler source code. The VAX J"
assembler source code will be recoded into Nebula assembler
source code. The great majority of the machine dependent code is
written in C, and will have to be modified by hand. There are a
few parts of the kernel which are largely machine independent.
These routines will be recompiled and linked with the machine
dependent routines to produce an executable Unix kernel. A sum-
mary of the kernel modules being rehosted and the work that is
anticipated for porting each to the Nebula is provided as Appen- .
dix A.

3.1.1 Desj nnd__lementation oaga

In designing the modifications to the Unix Kernel, several
goals are being pursued. These goals have, and will serve as
guidelines to aid in evaluating critical design decisions and
-electing implementations.

lrDlementation Dependencies

It is a goal to produce a Nebula/Unix system that can be
easily ported to another implementation of the Nebula (1862B)
architecture. The Nebula Architecture definition does not
specify the entire functionality of a Nebula computer. Many
features are defined to be _1m/plementatioD _Dependent. Operating

systems must interact with many of these implementation dependen-
cies, thus making it impossible to write a totally implementation
independent Nebula/Unix Kernel. The modifications will be per-
formed so as to minimize the work needed to port the Brassboard
Nebula Unix to another hardware implementation. This will be
done by clearly commenting all implementation dependencies in the
source code. An attempt will be made to organize implementation
dependencies so that they may be easily identified and modified. '

ti; 0 of Nehu , IIardwaro "

It is a goal to u!se the Nebula hardware functionality when-
ever appropriate. Alt hOt h it is a goal to make the Nebula/Unix S
kernel impl em-nrtation iridoI ,n(ont, (de.;ign choices will exploit

h a, r (ware, i nipi er'mo,nit t {r n the rnssboar system. ,ThC

I

- 6-

exploitation will result in better performance and will not be
done at the expense of the implementation independence goal.
This approach will aid in the evaluation of the Nebula hardware
and the Brassboard implementation.

Kernel Funct ionaliy

It is a goal to maintain compatibility between the VAX Sys-
tem V and the Nebula Unix kernels. Compatibility will reduce the
effort required to rehost other System V system commands and
utilities to the Nebula.

Codn-g *Cgnvention*

It is a goal to adhere to the same coding conventions and
practices followed in the original System V Unix. These conven-
tions include global code organization, file, variable, function
naming conventions and code formatting conventions. These stan-
dards will aid programmers familiar with VAX System V Unix inter-
nals to maintain the Nebula Unix Kernel.

Futu9_re Systm Enhancements

It is a goal to implement the Nebula Unix Kernel so as to
facilitate the addition of functionality; particularly Real-Time
and Secure Operating system features. Capacity limitations will
be selected so as to allow for system expansions and modifica-
tions.

3.1.2 Arcb_it ectural Differences

The work that will be performed to modify the Unix Kernel
, can be categorized along the architectural differences between

the Nebula and the VAX machines. The two machines are dissimilar
., in their implementation of virtual memory, I/O, procedure model

and exception handling. Their non-privileged instruction sets,
addressing modes and interrupt handling structure are very simi-
lar.

Some of the modifications, such as the invocation of
privileged or Nebula ISA specific instructions and functions will

Scertainly be coded in assembler language. The great majority of
the modifications will be performed by modifying the C code.

D _ Dxdering

The VAX and the Nebula are both byte addressable machines.
The VAX addresses a word by the address of the least significant
byte. The Nebula addresses a word by the address of the most
significant byte. It is possible to write C code that is depen-
dent upon the addressing of bytes within a word. There is C code
in the Unix Kernel that assures, the byte ordering of the VAX.

Lp

r W 11 W'FW J W V rV1 % -% 7 - ~ W W hJ 7 W JR .1(. V . V . -J

-7 -

This code will be modified to reflect the Nebula byte ordering.

Procedure M .

The difference between the Nebula and VAX procedure model
centers around the Nebula procedure context stack. The VAX Unix
Kernel occasionally manipulates the VAX User stack to modify a
process's flow of control. The fact that the general registers
are allocated on the Nebula context stack also creates a rehost-
ing problem. The implementation of the Unix process model has
been redesigned to take the implications of the Nebula context
stack into account. These modifications will effect context
switching, virtual memory management, signal handling, non-local
gotos (longjmp) and process management functions.

Manipulation of the Nebula context stack is extremely
implementation dependent. The Nebula architecture description
does not fully define the format of the context stack content.
Similarly the context stack caching mechanisms are implementation
dependent. This implies that manipulating data in Nebula context
stack would be extremely implementation dependent. The caching
properties could pose very serious performance problems keeping
context memory data consistent with context cache. The Unix Ker-
nel will be modified so as to avoid manipulating the contents of
the context stack whenever possible.

Memory Management

The differences between the VAX and Nebula memory management
hardware are responsible for the most prevalent modifications
needed in performing a rehost from the VAX to the Nebula. The
memory mapping mechanism, protection mechanisms and virtual
address interpretation are very different. Manipulation of the
memory management hardware is an integral part of Unix Kernel
initialization, process creation, process switching, memory allo-
cation, memory trap handling, 1/O operations and process tracing
implementations. Since the impact of the memory management
hardware is so broad, this area is expected to comprise the larg-
est portion of the rehosting effort.

The I/O systems of the Nebula and VAX are very different.The Unix developers have been very careful to isolate the parts

of the kernel that perform machine dependent I/O operations. The
interface and structure of the code that performs machine depen-
dent I/O operations is flexible and very well defined. The
effort will consist of development of the device dependent
drivers and modification of the interface routines to handle the
Nebula/Unix process memory management. Modification and imple-
mentation of these modules will be straight-forward.

LD

.jS/ ~ . '9 I .7% 9*.
99%. ~ ~ ~ ~% * ~ , ~* ~ * .9. .* .*'. 9 .~.* ,- .

.M
I

. - .

- 8-

T V ra p and Ex=ptione

The Supervisor Calls (SVC), Traps and Exceptions of the

Nebula are different from the VAX. The assembler code that han-

dles these events funnels the handling of the events through a

single C procedure called trap. This minimizes the machine
dependence of these functions. It also provides a simple and
uniform state when entering the Kernel. Rehosting to the Nebula
will require writing of the system call and entry routines in
assembler language and modification of the t function.

Timer Upport

The timer support of the Nebula is very close to that of the

VAX. These modification will mostly entail changing code that
references VAX dependent hardware registers to Nebula dependent
hardware registers.

3.1.3 Kernel er_ Prepaat ion andIP

The Nebula System V Kernel image will be created using simi-
lar technique as on the VAX. The Kernel will be compiled, assem-
bled and linked on the VAX. The Nebula C compiler developed as %

the first part of the project will be used to compile all C code.
The Nebula Assembler supplied by RADC will be used to assemble
all output from the C compiler as well as the assembler language
modules hand written as part of the Unix porting effort. Each
object module produced by the Nebula assembler will be converted
into the System V common object module (a.out) format. This
conversion will be performed by a EUNICE hosted tool developed as
part of this effort. These modules will be linked by the System
V linker (1d) to produce the Kernel executable image. The tools
used in this process will be the same tools used to generate pro-
grams for execution under Nebula/Unix Kernel control.

On the VAX, the computer loads a small program into VAX
memory called the Bootstaa _oLade.. The VAX/Unix Bootstrap
Loader then locates and loads the Unix Kernel from the a.out .%
image on the root file system and passes control to the Kernel.
On the Nebula, the Nebula IPL feature will be used to load a
Bootstrap Loader. The Nebula/Unix Bootstrap will locate and load
the Unix Kernel using the same technique as on the VAX.

3 .1.4 KeL_ neji Debuqgjq/ n

The Unix Kernel is a large multi-task program with many suh-
tle real-time interactions. The most difficult parts to debug
will be the low-level machine dependent initialization routines.
Th, e routines will be partially debugged using the Nebula simu-
lator. This will greatly reduce the initial effort of getting
the rlebul a/Ulni x Kernel opera tin(on the B rasshoa rd sy stem.

-. - . .. A 6

7S

-9-

Unix has many self-consistency checks throughout the Kernel. h
If one of these checks fails, a Pani usually occurs. A Panic
prints relevent information about the error on the console and
dumps main storage. A dump can be examined with Unix tools
(crash and adb) to determine the exact state of the operating
system when the panic occurred. These tools will be modified to
help debug the Nebula Unix kernel. They will be hosted on the
VAX/EUNICE system.

3.2 NebulaJ__!OCLhannel Drivers

Because the Nebula I/O structure is significantly different
from that of the VAX, the I/O portion of the Unix rehost will S
require modifications to the code that handles I/O on the VAX.
The conversion of I/O routines for a generalized disk controller,
a terminal, a console, and memory devices will be undertaken.
The approach to making these modifications will be to replicate
the functionality provided on the VAX on the Nebula Brassboard.

The console on the VAX makes use of specific registers and
addresses designed for the console; there is a separate con-
troller for the console. The Nebula has no such facility and the
console will have to be connected via the Serial Point to Point
(SPP) Channel on the Nebula. To do this will require modifying
the cons.c and ttl.c modules so that they will work on the SPP.
The SPP is significantly different from the VAX Massbus in that
it is a programmable controller which will support much of the
processing to be done in the controller rather than in the CPU as 4
is the case on the VAX.

The terminals for the Nebula will also be connected via the
SPP. On the VAX, terminals are usually attached via a Unibus dev-
ice. The Unibus device is controlled by a device driver along
with the ttl.c and tty.c terminal handling modules. On the
Nebula the terminals will be connected directly to the machine
through the SPP. This will require modifying the drivers and
terminal handling modules so that they will control the SPP chan-
nel. As with the console, much of the I/O processing can be done
by the programmable controller. 2-.

The memory devices, which perform I/O on areas of memory,
will have to be modified to make use of the Nebula memory map-
ping. On the VAX, virtual addresses are translated by the I/O
routines to their physical location. A similar approach will be
used for the Nebula in that translation will be done by the I ,/0
routines using knowledge of the Nebula memory mapping scheme. 6

A disk system will be provided which will simulate a block
disk device uIsing the Nebula memory space reserved for this pur - s
i1g)5#e lipon Unix Kernel initialization. Alternatively a disk can

me emilated in a remote computer (like the VAX) using a remote
di sk ,:nn-ctedrJ via the 'SFPP. Th.ere will be previsiorns for I

~ -~ .--.-


~~~- - -~ -- - -. -e -. -

- 10 -

directly connected disk interfaced via the PPP channel. It may
not be possible to test PPP channel implementation if the
hardware is not available.

3.3 Cro_!3 Development Toolet

The Cross development toolset will be provided that will
allow compilation of C programs on the VAX/EUNICE system and exe-
cution on the Nebula Brassboard system. Programs will be
automatically prepared on the VAX/EUNICE development system by
invoking a command procedure (shell script) to compile, assemble,
convert, link and install the C program.

The C compiler has been developed as part of this effort.
The Nebula Assembler language generated by the C compiler is com-
pletely compatible with the standard Nebula Assembler provided by
RADC. The Nebula Object modules produced by the Nebula Assembler
will be converted by the Nebula Object module converter. This
converter is currently being developed as part of this effort,
and will be hosted on VMS/EUNICE. It will produce System V Com-
mon Object Module Format object modules. These modules will be
linked by the rehosted System V linker (ld) to form a System V
executable image. This image will also be in Common Object
Module Format, but will have the external references resolved.

The executable image will be installed in the Nebula/Unix
file system. This can be performed in one of two ways, depending
upon the system configuration. The Nebula/Unix file system will
reside either in Nebula main memory storage, or on a magnetic
disk storage. If the file system is to reside in Nebula main
memory, an entire Unix file system will be built on the EUNICE
system and down-loaded as part of the Nebula/Unix IPL procedure.
If the file system is to reside on a magnetic disk storage dev-
ice, the file system will be built on the EUNICE system and
installed to serve as the initial root file system. Since there
is currently no directly attached disk storage for the Brassboard
system, another computer will emulate a disk storage device over
a dedicated Serial Point to Point communications link. The com-
puter emulating the disk drive will maintain an image of the file
system in a disk file. I/O requests from the Nebula will be
translated into I/O requests to it's local file system.

It will also be possible to down-load a program over a
Serial Point to Point communications line, while the Unix system
is running . This will be accomplished by a procedure similar the
that used to down-load to the CPP, except the receiving computer
will be the Nebula.

%



- 11-

3.4 Bootstrap Tooj.set

A set of tools will be needed to generate and examine a
boot-able root file system. The Unix utilities including mKi,
.!3d , fsck will be hosted on the VMS/EUNICE system and used to
generate the image of a boot-able file system in a VMS/EUNICE
file. These utilities allow the construction, interactive edit-
ing and consistency checking of the Unix file system. Depending
upon the availability of a disk storage device, the image will
either be down-loaded into a Nebula disk storage device, or
incorporated as part of the Nebula/Unix Kernel image by the
Bootstrap program.

3.5 Nebula Hosted Toojft

The Nebula hosted toolset will be derived from the standard
System V toolset. Since these utilities are largely machine
independent and written in C, they may be rehosted to the Nebula
by recompilation of the C source code and installation into the
Nebula file system. The toolset will include only those tools
which are either machine independent, or are vital to the normal
operation of Nebula/Unix. A summary of the non-kernel Unix tools

to be ported to Nebula is presented in Appendix B. It should be
noted that the ability to access the entire toolset at once maybe impossible due to memory or disk limitations.

U.

.11.

- > ' - 4 -q , * , t., * .

U, ~ ~ * .PU.' ~I *.~ .~ ."*



- 12 -

4 Functionalty of thgported Unix

The Nebula System V Kernel will provide a subset of the VAX
System V Kernel functionality. Many of the modules not ported
from the original VAX System V subset have been deleted because
they support devices only available on the VAX. The subset has
been selected so as to support all the functionality specified in
of the statement of work (paragraph 4.2.1).

4.1 Kernel Subset

The statement of work specifies that the contractor should
define a subset of the Unix Kernel to port to the Nebula hardware
(paragraph 4.2). Some of the functionality of the VAX Unix Ker-
nel will not be ported to the Nebula because the hardware support
for is not available on the Nebula. There are a few large
optional subsystems of the System V Kernel that are not required
by the statement of work. The following features of the VAX Sys-
tem V Kernel will not be fully supported by the ported
Nebula/Unix Kernel:

1. The Ptrace(2) system call shall be limited. Certain
accesses of the traced child's memory space (Context stack)
will not be allowed. Full access of this system call on the
Nebula would jeopardize system security and system
integrity.

2. Nebula/Unix will not support the X25 network communications
protocol.

3. The old file system format (512 byte block size) will he
implemented, but not tested. The new file system format
(1024 byte block) yields larger capacity and better perfor-
mance. The old file system is available on the VAX strictly
for backward compatibility.

4. The optional shared memory system calls will be implemented,
but not fully tested.

5. The optional semaphore system calls will be implemented, but
not fully tested.

6. The optional message system calls will be implemented, but
not fully tested.

7. The optional virtual terminal interfaces will be imple-
mented, but not fully tested.

If unimplemented features are invoked by a user program,
or ror status codes will be returned.



-13-

4.2 Unix Extensijons

In addition to the standard VAX System V Unix Kernel func-
tionality, the Nebula/Unix will pruvide a capability for:

1. Memory resident file system.

2. Remote magnetic disk emulation.IN

These features will be added to the Kernel to facilitate
testing and utility of the Nebula/Unix port in lieu of access to
a directly connected high speed disk device.

The memory resident file system will be a region of physical,
memory reserved for virtual disk device. The virtual disk device
will be a block-type special device suitable for mounting a file
system. This device will be used to test file system functional-
ity in the absence of a directly connected magnetic disk storage
dev ice.

The remote disk device will be a block-type special device
that will service 1/0 requests by communicating with a remote
machine emulating a disk drive. The communications will take
place over a Serial communications line. Note that this approach
will greatly augment the utility of the Nebula/Unix system until
a directly connected magnetic disk storage device becomes avail-
able. The relatively low speed of the Serial interface will have
a serious negative effect upon the Unix system performance.

or

or r 4. .v % ,% %

LJ



I I I ,- - - - - a _ -a a

- 14 - Appendix A

Nebula/Unix Hosted Toolset

Appendix A summarizes Unix tools that were ported to the
Nebula/Unix system. The following tools are executable on the
Nebula/Unix system except for I/O problems.

at -- execute commands at a later time
awk -- pattern scanning and processing language
banner -- make posters
basename -- deliver portions of path names
bc -- arbitrary-precision arithmetic language 

r .

cal -- print a calendar
cat -- concatenate and print files
cd -- change directories
chmod -- change mode
chown -- change owner
chroot -- change root directory for a command
cmp -- compare two files
comm -- select or reject lines common to two sorted files
cp -- copy files P
cron -- clock deamon
crypt -- encode/decode
date -- print and set the date
dc -- desk calculator
dd -- convert and copy a file
df -- report number of free disk blocksPh
diff -- differential file comparator
diff3 -- 3-way differential file comparison
dircmp -- directory comparison
du -- summarize disk usage
echo -- echo arguments
ed -- text editor
env -- set environment for command execution
expr -- evaluate arguments as an expression
factor -- factor a number
file -- determine a file type
find -- find files
getopt -- parse command options
getty -- set terminal type, modes, speed, and line discipline
grep -- search a file for a pattern
id -- print user and group IDs and names
init -- process control initialization
join -- relational database operator
kill -- terminate a process
killall -- kill all active processes
line -- read one line
In -- link files
login -- sign on

ognarne -- get login name-.
Is -- li.t contentf; of a directory
mach i d -- provide truth va Iue about your prosessor type
mesg -- permit or deny messages

% %.



-15- Appendix A

mkdir -- make a directory
mount -- mount and dismount file system
mv -- move files
ncheck -- generate names from i-numbers
nice -- run a command at low priority
n1 -- line numbering filter
nm -- print name list of common object file
nohup -- run a command immune to hangups and quits
od -- octal dump
pack -- compress and expand files
passwd -- change login password
paste -- merge same lines of several files or subsequent

lines of one file
Pg -- file perusal filter for soft-copy terminals
pr -- print files to standard output
ps -- report process status
pwd -- working directory name
rm -- remove files
rmdir -- remove directories
sed -- stream editor
setmnt -- establish mount table
sh -- shell, the standard command programming language
shutdown-- terminal all processing
size print section" sizes of common object files
sleep -- suspend execution for interval
sort -- sort and/or merge files
stty -- set the options for a terminal
su -- become super-user or another user
sum -- print checksum and block count of a file
sync -- update the super block
tail -- deliver the last part of a file
tee -- pipe fitting
test -- condition evaluation command
touch -- update access and modification times of a file
tput -- query terminfo database

-- translate characters
true -- provide truth values
tty -- get the name of the terminal
umask -- set file-creation mode mask S
uname -- print name of current Unix system
uniq -- report repeated lines in a file
units -- conversion program
wait -- await completion of process
wall -- write to all users
wc -- word count
who -- who is on the system
write -- write to another user
xargs -- construct argument lists and execute command

I.
01

%4"%



MISSION
Of

Rcmte Air Development Center
RAtDC ptan4 and executes4 e4eatch, devetopment, -tes.t
and 4eeected acquisiLtion pk~ogtam4 in Auppo~~t o6

*Command, Conttot, Commu~nications and Intettigencc
(C3 1) activitieA. Techricat and engineexing
appor.t within atLea4 o6 competence is pkovided to
ESV P'Logtcam 066ice4 (P0s) and othe'L ESV etement3
to pe'L6o'tm e66ective acquisi44tion o6 C31 sys~tems.The a'Lea4 o6 technicat competence inctude
communications, command and contkot, battte

*management, indo,%mation puocessi.ng, 4LLAve4.Zance
4en~o4ts, intettigence data cottection and handting, (*40ZA..d state sciences, etec-t~'omagnetici, and
ptopagation, and etecttonic, main-tainabititq,
c.;-d cow;patibZZZitq.



-IJ' ~ Ii-.~ru - - - - - d

wcb

f//rn

9

I

S


